deoxy Inosine and Uridine Amidites and Supports

Select a Product:

deoxy Inosine 3'-lcaa CPG 1000Å
deoxy Inosine 3'-lcaa CPG 2000Å
deoxy Inosine 3'-lcaa CPG 500Å
deoxy Inosine CED phosphoramidite
deoxy Uridine 3'-lcaa CPG 1000Å
deoxy Uridine 3'-lcaa CPG 2000Å
deoxy Uridine 3'-lcaa CPG 500Å
deoxy Uridine CED phosphoramidite

Application Notes

Deoxy Inosine and Uridine Amidites and Supports:

Inosine is a purine analogue of guanosine which lacks the 2-amino group of the guanine base. As shown in Figure 1, Inosine can form both a base pair with cytidine with a standard Watson-Crick geometry and a base pair with Uridine in a wobble geometry (Figure 1). Inosine residues have do not have destabilizing effect on DNA duplexes regardless of the opposing base.1 Melting studies suggest the order of stability of base pairs of inosine with other bases is in the following order; I:C > I:A > I:T > I:G in deoxyribooligonucleotide duplexes.2

Figure 1: Schematic illustration of putative base pairing of Inosine with Cytosine and Uracil bases.

Applications:

  • Inosine-containing oligonucleotide primers has been used for enzymatic amplification of different alleles of the gene coding for heat-stable toxin Type I of Enterotoxigenic Escherichia coli.3
  • Its ability to form wobble base pairs allows it to play an important biological role as a component of the anticodon loop of tRNA molecules.4  
  • The deoxyinosine-containing oligonucleotides have been shown to be powerful tools for cloning genes whose amino acid sequences are known but whose corresponding base sequences can not be determined precisely due to codon degeneracy.5
  • DNA with deoxyinosine (dI) residues at positions corresponding to ambiguous nucleotides derived from an amino acid sequence have been successfully used as hybridization probes. The basis for this method is the deoxyinosine residue being expected to make base pairs with multiple bases.6

References:

1. Ohtsuka, E.; Matsuki, S.; Ikehara, M.; Takahaski, Y.; Masubara, K. J. Biol. Chem. 1985 260, 2605-2608.

2. Martin, F. H. et. al Nucleic Acids Res. 1985, 13, 8927-8938; b) Kawase, Y. et. al Nucleic Acids Res. 1986, 14, 7727-7736; c) Kawase, Y. et. al. Chem. Pharm. Bull. 1989, 37, 599-601; d) Uesugi, S. et. al. J. Biol. Chem. 1987, 262, 6965-6968.

3. Candrian, U.; Furrer, B.; Hofelein, C.; Luthy, J Appli. And Env. Micro. Biol. 1991, 955-961.

4. Crick, F. H. C. J. Molec. Biol. 1966, 19, 548-555.

5. Ohtsuka, E.; Matsuki, S.; Ikehara, M. Takahashi, Y.; Matsubara, K. The Jour. Biol. Chem., 1985, 260, 2605.

6. Ohtsuka, E.; Matsuki, S.; Ikehara, M.; Takahashi, Y.; Matsubara, K. J. Biol. Chem. 1985, 260, 2605-2608; Takahashi, Y.; Kato, K.; Hayashizaki, Y.; Wakabayashi, T.; Ohtsuka, E.; Matsuki, S.; Ikehara, M.; Matsubara, K. Proc. Natl. Acad. Sci. U.S.A. 1985 82, 1931-1935.

Loading...